000000 ランダム
 ホーム | 日記 | プロフィール 【フォローする】 【ログイン】

秋さんの台湾日記

PR

全3件 (3件中 1-3件目)

1

量子力学

2020年08月10日
XML
カテゴリ:量子力学






最終更新日  2020年08月10日 11時25分53秒
コメント(0) | コメントを書く


2020年06月03日
カテゴリ:量子力学






最終更新日  2020年06月03日 11時13分28秒
コメント(0) | コメントを書く
カテゴリ:量子力学
量子力学の完成

前期量子論の、(ニュートン力学的な)粒子としての性質と(マクスウェルの電磁気学的な)波としての性質をもった量子という概念の発見であるとすれば、ハイゼンベルク、シュレーディンガー等による量子力学の基本方程式の構築は、ニュートンの運動方程式とマクスウェルの方程式を統合したものであるといえる。

最初の統一的な量子力学の理論はヴェルナー・ハイゼンベルクによって与えられた。1925年、ハイゼンベルクはそれまでの量子論における状態の遷移に関する規則を一般化し、位置のような運動学的な量と、運動量のような力学的な量を結びつけた。このハイゼンベルクの方法は、マックス・ボルンとパスクアル・ヨルダン、ポール・ディラック、そしてハイゼンベルク自身によって発展され、同年の1925年に行列力学として定式化された[40]。ハイゼンベルクらによって、量子力学は非可換代数として理解されるようになった。

ド・ブロイが提案した物質波の概念を発展させる試みから、ピーター・デバイの指摘に促され、シュレーディンガーは1926年にシュレーディンガー方程式を得た[41]。同じく1926年に、シュレーディンガーはハイゼンベルクらによる行列力学と自身の波動力学の対応関係を示し、両者の理論が数学的に等価であることを示した[42]。シュレーディンガーによって、ド・ブロイが描いた物質の波動的描像が明確に示された。しかしながら、当初ド・ブロイやシュレーディンガーが思い描いたような空間に広まった物質の波動という描像は、波動関数が配位空間(英語版)上を動く波であって実空間上の波動ではないことなどから否定的に見られることとなる[43]。

1926年のシュレーディンガーの発表を受けて、ボルンは同じ年に波動関数の確率解釈を提示した。ボルンが示した要請は今日、ボルンの規則と呼ばれる。

ハイゼンベルクらによって発展された行列力学と、シュレーディンガーらによって形成された波動力学は、いずれも演算子形式の非相対論的量子力学における特別な形式の一つである。時間発展の役割を演算子に負わせた形式をハイゼンベルク描像といい、ハイゼンベルク描像における量子力学の基本方程式をハイゼンベルクの運動方程式と呼ぶ。同様に状態ベクトルの時間発展として量子系を描く描像をシュレーディンガー描像といい、シュレーディンガー描像における基本方程式をシュレーディンガー方程式と呼ぶ。あるいは、状態ベクトルを固有状態で展開した際、その固有状態の係数として現れる波動関数の時間発展方程式もシュレーディンガー方程式と呼ばれる。本来、シュレーディンガーが見出した形式は波動関数に関するものである。

1927年にはハイゼンベルクによって不確定性原理が示された。ボーアは、不確定性原理を基礎として量子力学の物理的解釈を構築し、相補性の概念を導入することで量子力学の物理的な基礎づけを試みた。ボーアに始まる、不確定性と確率解釈を統合する物理的な描像はコペンハーゲン解釈として知られている。

量子力学の解釈については、大きな議論が巻き起こった。確率解釈を嫌ったアインシュタインは、「神はサイコロを振らない」という有名な言葉を残した。

ハイゼンベルクやシュレーディンガーらによって示された量子力学は非相対論的な理論であった。相対論的な量子力学の定式化は、シュレーディンガーが波動力学を模索するにあたり、非相対論的理論を構築する以前に試みられていたが、既存の結果に一致するものは得られていなかった。相対論的な形式として、1926年にクライン=ゴルドン方程式が示されたが、クライン=ゴルドン方程式はスピン角運動量を含まず、波動関数の確率解釈を適用するには、確率が負になるという困難があった。 1928年の1月にポール・ディラックはクリフォード代数を導入することにより、確率が負にならない相対論的量子力学を構成した。ディラックが導いた方程式はディラック方程式と呼ばれる。

またディラックは1939年にブラ-ケット記法を導入した。ディラックに因み、ブラ-ケット記法はディラック記法(英: Dirac notation)とも呼ばれている。ブラ-ケット記法とは、ヒルベルト空間のようなある空間上の状態ベクトルをケット(英: ket)、その双対空間上のベクトルをブラ(英: bra)で表す記法のことで、ブラとケットの自然な積として波動関数の内積などを簡潔かつ視覚的に示す目的で利用される。

ジョン・フォン・ノイマンらにより、量子力学の数学的に厳密な形式化(基礎)が確立された(『量子力学の数学的基礎』(1932) 他)。

量子力学の完成以降の発展と応用
量子力学の定式化が行われるようになって、現代物理学では量子力学とアインシュタインの相対性理論が最も一般的な物理学の基礎理論であると考えられるようになった。その後、電磁相互作用、重力相互作用を量子力学に組み込むことが求められるようになった。それぞれ、特殊相対性理論や一般相対性理論と量子力学の橋渡しをしてひとつの定式化された理論を目指すことに相当する。

1950年代にリチャード・ファインマン、フリーマン・ダイソン、ジュリアン・シュウィンガー、朝永振一郎らによって量子電磁力学が構築された。量子電磁力学(りょうしでんじりきがく、英: Quantum electrodynamics: QED)とは、電子を始めとする荷電粒子間の電磁相互作用を量子論的に記述する理論である。一方、量子力学と一般相対性理論を合わせた理論(量子重力理論)は、いまだ完成されていない。

さらに素粒子物理学の発展によって従来考えられていなかった電磁力や重力以外の基本相互作用が認められるようになった。量子色力学が研究されるようになり、1960年代初頭から始まる。今日知られる様な理論はデイヴィッド・ポリツァー、デイヴィッド・グロス、フランク・ウィルチェックらにより1975年に構築された。すべての基本相互作用を含む大統一理論の探求がおこなわれている。

これまでに、シュウィンガー、南部陽一郎、ピーター・ヒッグス、ジェフリー・ゴールドストーンらと他大勢の先駆的研究に基づき、シェルドン・グラショー、スティーヴン・ワインバーグ、アブドゥッサラームらは電磁気力と弱い力が単一の電弱力で表されることを独立に証明している(電弱理論)。

量子力学の成立によって物性物理学の発展に基づいた現代の工学の発展は可能になった。今日のIT社会ないし情報化社会と呼ばれる状況を成立させている電子工学も、半導体技術などが量子力学をその基盤としている。量子力学はまた化学反応の現代的な記述を可能にし、量子化学の分野が発展した。






最終更新日  2020年06月03日 09時18分02秒
コメント(0) | コメントを書く

全3件 (3件中 1-3件目)

1


Copyright (c) 1997-2020 Rakuten, Inc. All Rights Reserved.